

ISSN (print):2182-7796, ISSN (online):2182-7788, ISSN (cd-rom):2182-780X

Available online at www.sciencesphere.org/ijispm

International Journal of Information Systems and Project Management, Vol. 6, No. 3, 2018, 45-59

◄ 45 ►

To schedule or not to schedule? An investigation of

meetings as an inter-team coordination mechanism in large-

scale agile software development

Nils Brede Moe

SINTEF Digital

7465 Trondheim, Norway

www.shortbio.org/nils.b.moe@sintef.no

Torgeir Dingsøyr

SINTEF Digital

7465 Trondheim, Norway

www.shortbio.org/torgeird@sintef.no

Knut Rolland

SINTEF Digital

7465 Trondheim, Norway

www.shortbio.org/knut.rolland@sitnef.no

Abstract:

Coordination of teams is critical when managing large programmes that involve multiple teams. In large-scale software

development, work is carried out simultaneously by many developers and development teams. Results are delivered

frequently and iteratively, which requires coordination on different levels, e.g., the programme, project, and team levels.

Prior studies of knowledge work indicate that such work relies heavily on coordination through "personal" modes such

as mutual adjustment between individuals or through scheduled or unscheduled meetings. In agile software

development processes, principles and work structures emerge during the project and are not predetermined. We studied

how coordination through scheduled and unscheduled meetings changes over time in two large software development

programmes relying on agile methods. Our findings include transitions from scheduled to unscheduled meetings and

from unscheduled to scheduled meetings. The transitions have been initiated both bottom-up and top-down in the

programme organizations. The main implication is that programme management needs to be sensitive to the vital

importance of coordination and the coordination needs as they change over time. Further, when starting a program, we

recommend to early identify the important scheduled meetings, as having enough scheduled meetings is important to

develop a common understanding of domain knowledge.

Keywords:
coordination, programme management, agile software development, large-scale agile, software engineering.

DOI: 10.12821/ijispm060303

Manuscript received: 8 April 2018

Manuscript accepted: 14 June 2018

Copyr ight © 2018, SciKA. General permission to republish in pr int or electronic forms, but not for profit , a ll or part of this mater ial is granted, provided that the

Internat ional Journal o f Informat ion Systems and Pro ject Management copyr ight notice is given and that reference made to the publicat ion, to its date of issue, and to

the fact that reprint ing pr ivileges were granted by permiss ion o f SciKA - Associat ion for Promotion and Disseminat ion o f Scient ific Knowledge.

http://www.sciencesphere.org/ijispm
mailto:knut.rolland@sitnef.no

To schedule or not to schedule? An investigation of meetings as an inter -team coordination mechanism in large-scale agile

software development

International Journal of Information Systems and Project Management, Vol. 6, No. 3, 2018, 45-59

◄ 46 ►

1. Introduction

Coordination of work teams are of critical importance when managing large projects that involve multiple teams. Multi-

team projects are used in many domains, often to "achieve high quality innovations in a satisfactory time-to-market"

[1], and in such programmes "hundreds of people may be required to develop components of a new product

simultaneously" (ibid). In large innovative projects, the degree of complexity and uncertainty is high, as the work

executed in teams is influenced by the work and inputs from other teams. As a consequence, choosing the right

coordination practices is important, as they have significant influence on information sharing, work flow fluency

between teams, efficiency of the project, and learning outcomes [2]. In an editorial in the Journal of the Association for

Information Systems arguing for research on programme management, Jiang et al. [3] raise the question of how

interdependencies among projects can be leveraged to improve coordination.

Much of the resources used on innovations today are used on software development. Coordination was early identified

as a particular challenge in software development projects. In the 1990s, software projects were often associated with

overruns on time and cost, and many referred to a "software crisis". As Kraut and Streeter [4] state, "While there is no

single cause of the software crisis, a major contribution is the problem of coordinating activities while developing large

software systems". Since then, new methods for software development have been suggested, what is referred to as agile

software development [5, 6]. The practices in this field have also inspired the project management discipline [7]. These

methods were, however, intended for small, self-managing and co-located teams. Nevertheless, the popularity of these

methods has spurred their use also in large development programmes [8].

Coordination in large-scale software development is of paramount importance, since the work is carried out

simultaneously by many developers and development teams. Delivering results frequently and iteratively requires work

and knowledge coordination on different levels, e.g., the programme, project, and team levels. Additional supporting

roles are critical in large-scale projects for managing the exponential growth of interdependencies and mitigating

associated risks [9]. In such projects, interdependencies are more uncertain than in small projects; therefore, teams need

to know who the experts are and which experts to coordinate work with, particularly when they are outside the team or

even at a different site. Dingsøyr et al. [10] describe 14 mechanisms for inter-team coordination in a large-scale

software project. Further, agile methods are emergent [11], which means that processes, principles, and work structures

emerge during the project rather than being predetermined. As a consequence, how an agile project is coordinated

changes during a project. Therefore, to understand coordination in large-scale agile projects there is a need to study

coordination over time.

Van de Ven et al. [12] propose three coordinating modes: by programming or codification (impersonal mode), and

coordination by feedback on the individual (personal mode) or on a group level (group mode). In the case of high

uncertainty in multi-team projects, the work relies heavily on coordination through group mode [2]. This article

examines the use of the scheduled and unscheduled meetings (group mode) in large-scale agile development

programmes. We analyse how coordination through scheduled and unscheduled meetings change over time in two large

software development programmes that make use of agile development methods. We ask the following research

question:

How do inter-team group mode coordination mechanisms change over time in large-scale agile development?

In answering this research question, this paper presents results from two case studies on large-scale agile software

development programmes. In both cases, albeit, in different ways, coordination mechanisms break down, are tested, and

become established over time. In this sense, based on our study, coordination mechanisms are not stable but dynamic

and are always in the making through the lifetime of a project. Especially in terms of coordination mechanisms for the

group mode, this is important in large-scale agile software development programmes. In more practical terms, for

project managers, we argue that it is not only important to be aware of how to organize a project in a start-up phase but

also to continuously evaluate and change coordination mechanisms over time as the project is progressing. As such,

new coordination mechanisms may emerge out of the practise of project participants in a bottom-up fashion, or they

To schedule or not to schedule? An investigation of meetings as an inter -team coordination mechanism in large-scale agile

software development

International Journal of Information Systems and Project Management, Vol. 6, No. 3, 2018, 45-59

◄ 47 ►

may be established top-down by project managers. Our cases show that different strategies are followed at different

stages or phases in the project depending on the problem situation at hand.

The remainder of the paper is organized as follows. Section 2 outlines related work. In Section 3, we describe our

research methodology. In Section 4, we present our findings from the cases and cross-case analysis, which are further

discussed in Section 5. Finally, Section 6 concludes the paper with a summary of major findings. This article is a

revision and extension of Dingsøyr et al. [13].

2. Coordination in large-scale agile software development

2.1 Coordination in agile project management

Software development projects are often complex undertakings that involve multiple interdependencies between

resources, tasks, teams, roles and various software components and systems [14]. IT projects as a particular category of

projects often imply blurred boundaries with other projects that require specific coordination [15]. Therefore, it

becomes essential for project managers to pay attention to and implement means for efficient coordination. Important in

relation to coordination, is the difference between traditional project management approaches and more agile

approaches. Whereas traditional approaches typically focus on formal coordinating mechanisms through a pre-defined

process, precise and in-depth documentation, and high levels of specialization in role assignments [16], agile

approaches tend to favour self-management (teams determine the best way to handle work), emergent processes

(processes, principles, and work structures emerge during the project rather than being predetermined), and more

informal coordinating mechanisms [11]. Coordination in agile projects will therefore change over time. Although

software development today is primarily conducted using agile methods [6], also agile approaches to project

management involve coordination challenges – especially in larger projects and programmes [17]. As shown in recent

literature on agile project management, agile projects involve specific challenges related to coordinating and

communicating with multiple stakeholders as agile development often require frequent releases and collaboration with

customers [18]. Also, in large-scale agile projects the more informal approach to coordination can become challenging

[23]. Moreover, recent studies suggest that organizing projects in larger programmes may help solving some of the

coordination problems across different projects [15].

2.2 Coordination and coordination modes

Software development teams must coordinate the efforts of those who are part of the process, as well as ensure

coordination with suppliers, clients, and other groups both outside and inside the organization. The team has to make

sure that the work is complete and fits together, there is no duplication and components of the work are handed off

expeditiously [4].

A widely used definition of coordination is Malone and Crowston´s: “Coordination is managing dependencies between

activities” [19], published in computer science. This definition emphasize dependencies, which are the constraints on

action in a situation. Van de Ven et al. [12], from the field of sociology, define coordination as "integrating or linking

together different parts of an organization to accomplish a collective set of tasks”. Because Van de Ven et al. focuses on

the coordination of different parts of an organization (e.g., linking teams), their model is highly suitable in this case

study, where the focus is coordination in multi-team programmes.

Coordination in large-scale projects is exercised through several mechanisms [2]. Van de Ven et al. [12] propose three

coordinating modes: by programming or codification (impersonal mode), and coordination by feedback on the

individual (personal mode) or on a group level (group mode). Once implemented, the impersonal coordination

mechanisms are codified and require minimal verbal communication between people. Examples include pre-established

plans, process documentation, intranet pages and roadmaps. Coordination by mutual adjustment or feedback is based on

informal communication. In the personal mode, individual role occupants serve as the mechanism for making mutual

task adjustments through either vertical or horizontal channels of communication. The mechanisms for vertical

communication are usually line managers. In the group mode, the mechanism for mutual adjustment is vested in a group

To schedule or not to schedule? An investigation of meetings as an inter -team coordination mechanism in large-scale agile

software development

International Journal of Information Systems and Project Management, Vol. 6, No. 3, 2018, 45-59

◄ 48 ►

of role occupants through scheduled or unscheduled meetings. In projects with high task uncertainty (like in a software

development project) there is a need for an extensive and dynamic knowledge exchange between and within teams to

solve problems and adjust for emerging changes [20]. The scheduled meetings are therefore effective because physical

proximity allows richer communication, which enables swifter and more flexible coordination [21]. Dietrich [2] also

points to prior studies that found that technological novelty relates to a higher rate of group meetings instituted by

management. As a consequence, planned and unplanned meetings (group mode) are important in large complex

projects. Scheduled meetings are typically used for routine meetings, involving planned communication, while

unscheduled meetings are used for unplanned communication between more than two participants.

2.3 Group mode in large agile projects

Relying on group mode for coordination is challenging when scaling a project. In large software projects, group mode

can take part within teams, between group of managers or groups of team representatives acting on behalf of their

teams. Through a project hierarchy it is possible to achieve a kind of layered mutual adjustment, but only with strong

elements of hierarchy and bureaucratic control [21]. A key challenge with layered mutual adjustment is that it is not

always clear who should be involved in which coordination activities.

In agile software development, group mode coordination by scheduled meetings at the team level is ensured through

practices like iteration planning meetings, daily meetings, iteration demonstration meetings and retrospectives [22-24].

Scrum, a project-management-oriented agile development method, was inspired by a range of fields, such as complexity

theory, system dynamics, and Nonaka and Takeuchi’s theory of knowledge creation [25]. In Scrum, a self-managing

team develops software in increments (sprints); each sprint starts with a planning meeting and ends with a retrospective

and a review meeting. The team coordinates on a daily basis through a 15-minute daily Scrum (a daily reporting and

discussion meeting) [26, 27]. Features to be implemented are registered in a product backlog, and a Product owner

decides which backlog items should be developed in the following sprint. The product backlog comprises a prioritized

and constantly updated list of business and technical requirements for the system being built or enhanced. Multiple

stakeholders, such as clients, project teams, architects, designer, marketing and sales, management, and support, can

participate in the planning phase (usually through meetings) to identify the product backlog items. During the planning

meeting (usually every second, third or fourth week), the Product owner is responsible for presenting a prioritized

product backlog to the team. The highest priority items from the product backlog are then detailed in a sprint backlog

during a team-planning meeting. Because the team and the Product owner is responsible for defining and improving

coordination practices, agile can be understood as a bottom-up approach to coordination.

Group mode coordination by unscheduled meetings is ensured at the team and inter-team level by team members and

teams sitting together in the same office. Strode et al. [22] found both unscheduled cross-team talks and backlog

specification meetings emerged as a result of co-location. Similarly, Nyrud and Stray [28] observed that informal and ad

hoc conversations emerged in a large-scale web-program as a result of teams being co-located in an open office. While

open office is an enabler for unscheduled meetings and many scheduled meetings and forums increase the amount and

frequency of communication between teams, Smite et al. [29] found that it was difficult to have unplanned meetings

because of too many scheduled meeting and a lack of meeting rooms.

In a large-scale setting the most common strategy for coordination across several teams is Scrum of Scrum. Scrum of

Scrum is a scheduled meeting were one team-member acts as "ambassador" to participate in a daily meeting with

ambassadors from other teams. However, Scrum of Scrum has been found to be inefficient in larger projects [30, 31].

As a consequence, agile consultants have created several frameworks for scaling agile, such as the Large-Scale Scrum

(LeSS) [32] and Scaled Agile Framework (SAFe) [33]. The LeSS framework offers less structure and gives

suggestions, tools and tips of practices that can be used for coordination, such as communities of practice and scheduled

multi-team meetings. In the LeSS, any team or team member should be able and expected to reach out to another team

if there is an issue to be solved (both through scheduled and unscheduled meetings). The LeSS can be understood as a

bottom-up coordination approach of coordination. The SAFe is a more structured way of organizing the work, this

includes, e.g., a common release calendar with joint programme increment planning days. Thus, the SAFe seems to

To schedule or not to schedule? An investigation of meetings as an inter -team coordination mechanism in large-scale agile

software development

International Journal of Information Systems and Project Management, Vol. 6, No. 3, 2018, 45-59

◄ 49 ►

create a structure with more organizational control, which might leave less flexibility for meetings to emerge and for

teams to take the initiative for coordination. The SAFe can be understood as a more top-down approach to

coordination.

2.4 Coordination over time

In large-scale projects coordination mechanisms seem to change over time as involved actors need to solve new

problems implicating previously unknown interdependencies [31]. In conceptualizing such dynamic processes of

coordinating, Jarzabkowski et al. [34] suggests that new coordination mechanisms are gradually established through

existing social practices of coordinating. Hence, all elements of a coordinating mechanism do not exist prior to

coordinating – but is rather bootstrapped out of coordinating itself. So, for example, in a large-scale agile project using

meetings to coordinate activities in different developments teams (Scrum of Scrums), new forms of coordinating may

emerge out of participants’ practices when they discover absences in the current coordinating mechanism. Arguably,

this is what often happens in large-scale agile projects that start off with simple coordinating mechanisms in Scrum

(daily meetings, demos, sprint planning, Scrum of Scrum, etc.) only to discover that multi-team projects (e.g., [30, 31])

often require additional mechanisms for coordinating, for example architecture meetings across teams, upfront meetings

involving both customer and software provider, and communities-of-practice. Moreover, the complexity of large-scale

agile projects typically involves unintended changes, twists and turns that may “disrupt” existing coordination

mechanisms making them obsolete. More concretely, based on their qualitative study of coordination mechanisms,

Jarzabkowski et al. [34] develop a process model consisting of five cycles that describe how coordinating mechanisms

are 1) disrupted by external events, 2) absences are discovered, 3) new elements of coordinating are created, 4) new

patterns of coordinating are established, and 5) stabilizing patterns of coordinating.

3. Method

This study builds on two broad case studies of large-scale development programmes, Alpha and Beta, which

investigates how agile methods were adapted in the very large scale. Changing or introducing new ways of coordinating

work requires changes at the procedural, structural and even strategic level. Such organizational changes take a

relatively long time [35]. Therefore, to understand coordination in a large-scale agile project we have studied how

coordination changes over time in the two case studies. Previous studies [17, 36] show how large development

programmes dealt with method tailoring, technical architecture, customer involvement and inter-team coordination. We

have taken material from two cases and further analysed our data material on coordination, focusing on the use of the

group mode (see characteristics of the programmes in Table 1).

Alpha was chosen because practitioners described it as a successful, very large programme that used agile development

methods to a large degree. The whole programme was co-located, and coordination mechanisms could be studied in a

setting that is well suited for agile methods. The Alpha programme developed a new office automation system for a

public department. The programme was managed by the department and involved two main consulting companies as

subcontractors in the project development.

Beta was selected as one of Norway’s largest IT-programme with an extensive use of agile methods and was partly co-

located. The programme involved complex integration among a wide variety of internal and external information

systems, involving various stakeholders with divergent interests. Moreover, before starting Beta, the supplier, an

international consulting company, had been part of Alpha.

Our study draws on the established tradition with theoretically informed interpretive case studies in information systems

[37, 38] and hence aims at following relevant guidelines for such research [39, 40].

3.1 Programme context and delivery model

Both programmes were planned according to a model based on PRINCE2 [41] with distinct phases. The programmes

included projects for architecture, business, development and test with project managers. At Alpha, the development

To schedule or not to schedule? An investigation of meetings as an inter -team coordination mechanism in large-scale agile

software development

International Journal of Information Systems and Project Management, Vol. 6, No. 3, 2018, 45-59

◄ 50 ►

project was split into three subprojects, two managed by external consulting companies and one managed by the

customer itself. An external consulting company was managing the Beta programme, and there was less involvement

from the customer. In both programmes, the software development was conducted using the agile development method

Scrum with an iteration length of three weeks. This meant that there would be a demonstration of the product every

three weeks, and teams made detailed plans for three-week iterations. Each team was physically placed around a table,

with a board showing progress on one side and with space for making notes during discussions on the other side. In

both programmes, the teams were physically co-located. The delivery model included the following four phases:

 Analysis of needs - This phase started with a walkthrough of the target functionality of a release and

identification of high-level user stories. Product owners prioritized the product backlog.

 Solution description - The user stories were assigned to epics, and the user stories were described in more

detail, including design and architectural choices. User stories were estimated and assigned to a feature team.

 Construction - Development and delivery of functionally tested solutions from the product backlog, with five

to seven iterations per release.

 Approval - A formal functional and non-functional test to verify that the whole release worked according to

expectations. This included internal and external interfaces as well as interplay between systems.

To keep the schedule, solution descriptions needed to be ready in time for the teams. This meant that releases were

constantly being planned, constructed, and tested (Approval phase). Thus, a team would constantly be engaged in

construction for release n, approving delivered functionality in release n-1, and analysing needs for the next release

(n+1).

Table 1. Characteristics of the Alpha and Beta programmes.

Characteristic Alpha programme Beta programme

Number of people involved at the most 175 120

Number of development teams 12 5

Employees in customer organization 380 7 000

Duration 5 years 4 years

Product releases 12 3

3.2 Data collection

Our data collection started when the programmes were finished, using individual interviews in Beta, group interviews in

Alpha and internal and external documents for both cases as shown in Table 2. We analysed the material in a tool for

qualitative analysis, focusing on reporting findings related to group mode coordination and how it changed over time.

Table 2. Data collection from the Alpha and Beta programmes.

Data source Alpha programme Beta programme

Individual interviews 0 27

Group interviews 9 two-hour interviews with a total of 24 participants 0

Documents External experience report

Internal experience report

Tender documents

Project documents such as plans and scope

IT-strategy documents

To schedule or not to schedule? An investigation of meetings as an inter -team coordination mechanism in large-scale agile

software development

International Journal of Information Systems and Project Management, Vol. 6, No. 3, 2018, 45-59

◄ 51 ►

3.3 Data analysis

We imported all interview transcripts and documents into tools for qualitative analysis and did a descriptive and holistic

coding [42] of the topic coordination. Units of text ranged from sentences to whole pages and were coded into topics

such as “Scrum of Scrums”, “daily meetings”, “table discussions”, “ad hoc conversations” and “coffee breaks”. The

results were presented and discussed with the rest of the research team. Given the various topics and backgrounds of the

researchers, the level of detail in the coding varied between the research teams.

4. Results

In both Alpha and Beta, group mode coordination took place through a number of scheduled meetings as well as

unscheduled meetings shown in Table 3. Both types of meetings were seen as important, as one said,

"I think the combination of scheduled and unscheduled coordination that just appeared was very important" (Scrum

master and developer, Alpha).

We first describe scheduled meetings at the programme and project levels. The programme consisted of several sub-

projects. We report on scheduled meetings common for both Alpha and Beta, and those that only existed in one of the

programmes. Then, we repeat the structure for unscheduled meetings. We do not describe meetings that only included

one team (e.g., Daily Scrum, Retrospective, and team coffee breaks).

Table 3. Examples of scheduled and unscheduled meetings in programmes Alpha and Beta.

Examples

of meetings

 Alpha Beta Description

Scheduled Metascrum

X X

A regularly meeting with project managers from the development, architecture, test and the

business projects, as well as subproject managers from the development projects.

 Scrum of

Scrums

X X

Scrum of Scrum meetings several times a week. One team-member act as "ambassador" to

participate with ambassadors from other teams. Scrum masters and project manager

attended, and sometimes stakeholders such as product owners and test managers.

 Bug board

X X

Meeting to discuss errors identified and agree on which to correct, and which team should

be assigned to do the correction. Test manager, test responsible and sometimes also

developers participated.

 Architecture

meeting

X X

A regularly meeting for the architects discussing the overall software architecture,

establishing architectural guidelines, and for coordinate work between the teams.

 Product owner

meeting

X X A regularly meeting for the Product owners.

 Lunch

seminars

X Seminar where 2–3 people gave short presentations during lunch on topics such as new

architectural components, project management or on how to follow up on a team.

 Subproject

meetings

X Meetings within the subproject.

 Open Space

X A process where all participants suggested topics for discussion, which is made into an

agenda and participants are free to join discussion groups of interest. Used per release

during parts of the project.

 Experience

forum

X A meeting forum at one subcontractor for Scrum masters, development manager and agile

coach focusing on development method.

 Ready-to-sprint

meeting

 X

Members from different teams to coordinate and uncover interdependencies involved in the

following sprint.

To schedule or not to schedule? An investigation of meetings as an inter -team coordination mechanism in large-scale agile

software development

International Journal of Information Systems and Project Management, Vol. 6, No. 3, 2018, 45-59

◄ 52 ►

Examples

of meetings

 Alpha Beta Description

 Task force X Individuals grouping together across teams in order to solve technical problems.

Unscheduled Coffee breaks X X Unscheduled meetings at the coffee machine.

 Discussions on

team tables

X X The teams were organized around tables. Many discussions emerged at the team tables both

with team members and team-external people.

 Spontaneous

Discussions in

open work area

X X The project with all teams and project management was situated in an open-plan office

space. Many of the decisions made in the project were discussed between relevant

stakeholders informally in the open work area and then and then officially decided upon in

one of the scheduled meetings.

 Group chat tool X Instant messaging to all participants was set up after a need was identified in an open space

session. Was used for open technical questions but also for social activities such as wine

lottery.

4.1 Scheduled meetings

At the programme level, the only arena where everyone would meet was at the demonstration meetings, which were

held every three weeks. In addition, the programme management met two times a week in a forum, which was called

"Metascrum". The Metascrum included managers from the main projects and the central programme management,

giving attention to "high-level" obstacles to progress and the assessment of risks in the programme. At Alpha, a new

arena was introduced well into the programme, the "open space technology". Open space was a way to motivate the

whole programme to discuss challenges and improvement initiatives. This included both technical and business topics

that people thought «we need to discuss». One result from the open space sessions was that the programme started using

a group chat tool, Jabber, described under unscheduled meetings.

In addition, there were separate meetings to identify dependencies in tasks before work was assigned to teams. At Beta,

the meetings varied over the nearly four years of development, but meetings concerning overall software architecture,

project managers meeting, and project owners meeting were conducted regularly. These meetings involved participants

from both the Consultant Company and the Customer. In the later part of the programme, a meeting referred to as the

“Bug Board” was also established to coordinate actions for solving critical problems on technical issues, mercantile

issues or processual issues.

In Alpha and Beta, at the project level, there were three main types of scheduled meetings: meetings prescribed by the

agile method Scrum, meetings in the main projects in the programme, and meetings in fora at the project level to share

experiences across the development teams.

Scrum of Scrums were held in the three development subprojects at Alpha and in the main programme at Beta with

Scrum masters and subproject managers from 3-6 development teams. Project managers sometimes participated in these

meetings. One subproject at Alpha had daily Scrum of Scrum meetings in the beginning but reduced the frequency to

three times per week. In this meeting strategic decisions were taken, e.g., on resources. One subproject manager gave an

example of a typical discussion in the Scrum of Scrum meeting:

"Now we have two people who are ill in the team, and we have given away a person to the environment team, how shall

we manage to deliver our stories in the iteration?"

In addition, retrospectives were sometimes held across teams in the subprojects, but overall this was an activity within

each team.

In Alpha, the projects architecture, business and test had meetings with their own staff and the people who held roles in

the development teams. In the business project, much of the work concentrated on managing dependencies, "there were

To schedule or not to schedule? An investigation of meetings as an inter -team coordination mechanism in large-scale agile

software development

International Journal of Information Systems and Project Management, Vol. 6, No. 3, 2018, 45-59

◄ 53 ►

dependencies throughout the program" (technical architect). One of the participants in meetings in the business project

said,

"When we talked to the product owner, the product owner said, ‘we need you to do this’, but then we had to explain that

to achieve that we first need to do these tasks" (functional architect).

The meetings in project architecture focused on establishing architectural guidelines but also focused on coordinating

work amongst the development teams to reduce the number of teams working on the same part of the codebase. "This

was to reduce the possibility of making trouble for each other - which we did". The codebase was organized to reduce

these challenges and in meetings teams declared that "this is our central area of work this period, so please limit work in

that area" (technical architect).

In Beta, several other meetings for coordinating across teams and roles were also established in the later parts of the

programme. Most profoundly, some members from different teams, to coordinate and uncover interdependencies

involved in the following sprint, first practised a meeting referred to as “ready-to-sprint”. This meeting turned out to be

crucial to distribute work in a way that made the different teams work as autonomous units as far as possible. These

meetings had different participants as roles and individuals relevant for uncovering and analysing interdependencies

varied from sprint to sprint. These meetings first grew out of the pressing need for coordinating across teams

experienced by individual team members and were later sanctioned by project managers as a practice to adopt in a more

systematic manner.

Another example of how coordinating mechanisms for groups changed over time in Beta is what was referred to as

‘task forces’. As the project progressed, individual team members experienced that existing coordinating mechanisms

like Scrum of Scrums and architecture meetings were not enough for solving especially complex problems involving

interdependencies across teams. These were often highly technical problems relating to for instance security issues,

integration with legacy systems, and performance issues. Hence, there was an absence of coordinating mechanisms for

handling such emerging problems. The coordinating mechanism referred to by participants as ‘task forces’ emerged out

of individuals grouping together across teams to solve these technical problems. The group meeting could last for

several days until a solution was found. As explained by the project manager in the later phase of the project:

“We had a special task force for solving issues on performance where we had experts how hunted down components

that had poor performance” (Project manager, Beta).

The project also experienced situations where existing coordinating mechanisms that used to work out well collapsed.

One example of this was a specialized architecture meeting referred to as the ‘Service Oriented Architecture forum’. As

explained by the one architect, this suddenly stopped working as a coordinating mechanism:

“We had a group called the Service Oriented Architecture-forum during the whole project, but over time, it did not

work. In the beginning, it worked as a meeting for making decisions regarding the software bus [used in the customer

organization], but after a while it stopped working because we were waiting for information – and hence we had poor

progress“ (Solutions architect, Beta).

Experience-sharing across teams were the focus of several scheduled meetings at the sub-project level: "Experience

forum", "Lunch seminars" and "Technical corner" are examples of meetings that existed during the Alpha programme.

A topic discussed at the experience forum was how to liven up the retrospectives. This was then a topic discussed

amongst all participants in the development teams in one project. Participation in these meetings was voluntary.

4.2 Unscheduled meetings

Unscheduled meetings were easy to organize due to the open workspace. Unplanned meetings frequently took place

around the boards that were available for each team. These were used to "discuss solutions, draw and make sketches"

(subproject manager, Alpha). These discussions spanned development teams and roles. The project management was

placed on tables so that they could see most of the boards and thus quickly obtain an overview of status of the teams.

To schedule or not to schedule? An investigation of meetings as an inter -team coordination mechanism in large-scale agile

software development

International Journal of Information Systems and Project Management, Vol. 6, No. 3, 2018, 45-59

◄ 54 ►

If the project managers noticed discussions, they could inquire about the issue and say that,

"This problem I know was addressed by another team two iterations ago, let us get ‘Ola’ over here and see if he can

help" (Subproject Manager, Alpha).

A Scrum master and developer stated that they learned "very much" in the programme during these discussions around

the boards, but it was important to have sufficient coordination arenas so that people realize that "we need to talk". The

programme also started to use the group chatting tool (Jabber) to ease informal coordination, what we can see as a type

of unscheduled virtual meetings. This tool was introduced during the programme, which enabled asking several people

for help without interrupting them. This channel was used for several purposes, as a technical architect from Alpha

expressed:

"It was used ad hoc...to whatever people wanted to use it for...technical things, wine lottery...and to ask «can anyone

tell me about a certain topic» - when you do not know exactly who to ask..." (Technical architect, Alpha).

In the Beta project, as most of the project was co-located, some of the early coordinating mechanisms like the Service

Oriented Architecture forum collapsed, and project participants began to ‘know the organization’, the role of

unscheduled meetings increased. Additionally, as the project progressed, more interdependencies were discovered, and

thus more coordinating was needed. In this situation, a primary coordinating mechanism emerged in terms of situational

unscheduled meetings between only a few project members for a relatively short time (less than an hour). As explained,

“By and large [coordination] is ad hoc. It was common practice to just walk over to each other [other teams] to discuss

and solve issues there and then. And it was also a common understanding that such issues needed to be solved at once.

And if [everyone] did so, this would certainly reduce the frictions between teams” (Developer, Beta).

5. Discussion

We have described the use of group mode coordination in two large-scale software development programmes using the

agile development method Scrum and planned according to PRINCE2 with distinct phases. We have presented how

interdependencies are managed using scheduled and unscheduled meetings at different levels in programme

organizations, partially answering one of the questions raised by Jiang et al. [3]. The programmes included projects for

architecture, business, development and test. We have relied on Van de Ven et al. [12], who define coordination as

"integrating or linking together different parts of an organization to accomplish a collective set of tasks”. We found that

the group mode (scheduled and unscheduled meetings) was extensively used in the two large-scale agile programmes.

In large-scale agile software projects, a common strategy for coordination across several teams is Scrum of Scrum, in

which one team-member acts as "ambassador" to participate with ambassadors from other teams. We found 15

examples of scheduled and unscheduled meetings, which include Scrum of Scrum, backlog meeting, sprint related

meetings and workshops (Table 3). These are the same types of multi-team meetings that are recommended by the

large-scale agile framework LeSS [32]. In their study of six multi-team projects, Dietrich et al. [2] found the use of 11

coordination mechanisms in the group mode. One explanation that Dietrich et al. reported fewer coordination

mechanisms could be that their projects were product development or organizational development projects, which from

their descriptions seem less complex than Alpha and Beta. Another explanation could be that both Alpha and Beta are

large programmes while five of the six cases studied by Dietrich et al. were smaller projects with a maximum of 40

people. There is a distinct difference between managing a project and managing a programme in that the latter involves

more coordination that the former [3].

We now discuss our research question “How do inter-team group mode coordination mechanisms change over time in

large-scale agile development?” through emphasizing how coordination changes over time, and if changes are initiated

bottom-up or top-down in the programme organisation.

To schedule or not to schedule? An investigation of meetings as an inter -team coordination mechanism in large-scale agile

software development

International Journal of Information Systems and Project Management, Vol. 6, No. 3, 2018, 45-59

◄ 55 ►

5.1 Inter-team Group mode coordination over time

While some coordination mechanisms changed over time, the meetings related to the agile method Scrum were kept

throughout the programme (e.g., Scrum of Scrums, Meta Scrum, demonstrations and meetings at team level).

Furthermore, the iteration length remained at three weeks for both programmes, resulting in many synchronized

meetings (e.g., in the Scrum of Scrum, and ready-for-sprint meeting). In addition, people in the programmes were co-

located; therefore, coordination could easily emerge (coffee breaks and walking over to other teams). Organizing

meetings at the same interval throughout the programme (synchronization) and co-location (structure) was found to

support coordination effectively as described by the members of the programme. This is consonant with Strode et al.

[22] who found synchronization and structure enhance coordination effectiveness.

We have described two main transitions over time within the group mode: at Alpha, there was a high number of

scheduled meetings initially, but a gradual transition to unscheduled meetings. Informants stated that the initial

scheduled meetings were very important for the efficient use of unscheduled meetings later and that the unscheduled

meetings became more important than the scheduled meetings. The importance of unscheduled meetings is consonant

with Van de Ven [12] who found that unscheduled meetings are used to a greater extent than scheduled meetings in

larger units and when task uncertainty is high. At Beta, we found a transition from unscheduled to scheduled meetings

over time. The main reason for the transition at Beta was that the programme management identified the importance of

these unscheduled meetings, and therefore formalized them. Several of the scheduled and unscheduled meetings

emerged during the lifetime of the two programmes. Our findings are consistent with those of Jarzabkowski et al. [34],

who argue that coordinating mechanisms do not arise as ready-to-use procedures but are constituted as actors go about

the process of coordinating. Further, coordinating mechanisms are not stable entities, but emerge through their use in

ongoing interactions. Letting coordination mechanisms emerge is also recommended in the LeSS framework. In the

LeSS any team or team member should be able and expected to reach out to another team if there is an issue to be

solved. Dietrich et al. [2] did not distinguish between scheduled and unscheduled meetings.

We believe that having many meetings was important for inter-team group mode coordination mechanisms to change

over time. Many meetings enabled building knowledge and relations among the team early in each of the programmes.

Our findings are consonant with the finding of Smite et al. [29] in that many meetings and forums increase the amount

and frequency of communication between teams outside of the meetings. Frequent participation in forums and meetings

increases the size of a team’s social networks and gives the team a good overview of what is going on in the project

(ibid). Our findings are also in agreement with Strode et al. [43] who argue that ‘knowing who is doing what’ and

‘knowing who knows what’ are two important components of coordination effectiveness.

5.2 Group mode changes; top-down and bottom-up

Group mode coordination mechanisms changed over time in the two programmes. We found both a top-down approach

to coordination (mechanisms identified by the programme management) in addition to mechanisms that emerged

bottom-up by teams and members in teams. Examples of top-down mechanism were Meta Scrum and Scrum of Scrum.

Examples of mechanism that emerged bottom-up was the group chat tool identified in the open space, lunch forums and

technical meetings. Top-down initiatives defined by managers were important to establish many group mode

coordination mechanisms, which were important for new mechanisms to emerge.

Top-down initiatives can also ‘disrupt’ existing forms of coordination, and thereby kick off a process of establishing

something new. In the current literature on project management this issue is often debated under the heading of ‘project

governance’ [44]. A study by Klakegg et al. [45] argues that approaches to governance of large-scale projects varies

from top-down approaches using frameworks from the Association for Project Management to more bottom-up

approaches. Both Alpha and Beta are complex agile projects, and therefore need more flexible forms of management

focusing on facilitating collaboration and communication, rather than pure top-down approaches to governance. Our

findings are consonant with previous research on project management [46].

To schedule or not to schedule? An investigation of meetings as an inter -team coordination mechanism in large-scale agile

software development

International Journal of Information Systems and Project Management, Vol. 6, No. 3, 2018, 45-59

◄ 56 ►

6. Conclusion

Our study supports the finding that group mode coordination is central to achieving inter-team coordination in large

programs. In particular, we highlight the role of scheduled and unscheduled meetings to achieve effective coordination.

We have shown that the use of these meetings changes over time in two large-scale agile development programs. The

transitions have been initiated both bottom-up and top-down in the programme organizations.

When starting a program, we recommend to early identify the important scheduled meetings, as having enough

scheduled meetings are important to develop a common understanding of domain knowledge. An answer to the question

of “to schedule or not to schedule” would be to ensure a sufficient number of scheduled meetings initially, and then

reduce as the coordination needs are handled more informally. When identifying which scheduled meetings to start with

in a program, the meetings reported in table 3 can be used as a starting point.

While starting with enough scheduled meetings is important, we believe the unscheduled meetings are of great

importance in knowledge work and programme managers should strive to facilitate these meetings. Programme

management needs to be sensitive to the vital importance of coordination as well as the coordination needs as they

change over time in large programs. Further, program managers need to balance top-down and bottom-up coordination

initiatives when changing, terminating and identifying new scheduled and unscheduled meetings.

In future work, we plan to develop a further understanding of the "layered mutual adjustment" we have identified in

large-scale software development programmes, and how coordination mechanism emerge, terminate and how they are

connected in an ecology of coordinating mechanisms.

Acknowledgements

This project was supported by strategic internal projects at SINTEF on large-scale agile development and the project

Agile 2.0 supported by the Research council of Norway through grant 236759 and by the companies Equinor, Kantega,

Kongsberg Defence & Aerospace, Sopra Steria and Sticos, the A-team supported by the Research council of Norway

through grant 267704, and the companies Kantega, Sbanken, Storebrand and Knowit.

References

[1] M. Hoegl and K. Weinkauf, "Managing task interdependencies in Multi‐Team projects: A longitudinal study,"

Journal of Management Studies, vol. 42, no.6, pp. 1287-1308, 2005.

[2] P. Dietrich, J. Kujala, and K. Artto, "Inter‐team coordination patterns and outcomes in multi‐team projects," Project

Management Journal, vol. 44, no.6, pp. 6-19, 2013.

[3] J. Jiang, G. Klein, and W. Fernandez, "From Project Management to Program Management: An Invitation to

Investigate Programs Where IT Plays a Significant Role," Journal of the Association for Information Systems, vol. 19,

no.1, pp. 40-57, 2018.

[4] R. E. Kraut and L. A. Streeter, "Coordination in software development," Communications of the ACM, vol. 38 no.3,

pp. 69-82, 1995.

[5] P. Abrahamsson, O. Salo, J. Ronkainen, and J. Warsta, "Agile software development methods: Review and

analysis," VTT Technical report, 2002.

[6] T. Dingsøyr, S. Nerur, V. Balijepally, and N. B. Moe, "A decade of agile methodologies: Towards explaining agile

software development," Journal of Systems and Software, vol. 85, no.6, pp. 1213-1221, 2012.

[7] E. C. Conforto, F. Salum, D. C. Amaral, S. L. da Silva, and L. F. M. de Almeida, "Can agile project management be

adopted by industries other than software development?," Project Management Journal, vol. 45, no.3, pp. 21-34, 2014.

[8] B. Hobbs and Y. Petit, "Agile Methods on Large Projects in Large Organizations," Project Management Journal,

vol. 48, no.3, pp. 3-19, 2017.

To schedule or not to schedule? An investigation of meetings as an inter -team coordination mechanism in large-scale agile

software development

International Journal of Information Systems and Project Management, Vol. 6, No. 3, 2018, 45-59

◄ 57 ►

[9] B. S. Blichfeldt and P. Eskerod, "Project portfolio management – There’s more to it than what management enacts,"

International Journal of Project Management, vol. 26, no.4, pp. 357-365, 2008.

[10] T. Dingsøyr, N. B. Moe, T. E. Fægri, and E. A. Seim, "Exploring software development at the very large-scale: a

revelatory case study and research agenda for agile method adaptation," Empirical Software Engineering, vol. 23, no.1,

pp. 490-520, 2018.

[11] B. Boehm and R. Turner, "Management Challenges to Implementing Agile Processes in Traditional Development

Organizations," IEEE Software, vol. 22, no.5, pp. 30-39, 2005.

[12] A. H. Van de Ven, A. L. Delbecq, and R. Koenig Jr, "Determinants of coordination modes within organizations,"

American sociological review no. 41, pp. 322-338, 1976.

[13] T. Dingsøyr, K. Rolland, N. B. Moe, and E. A. Seim, "Coordination in multi-team programmes: An investigation

of the group mode in large-scale agile software development," Procedia Computer Science, vol. 121, pp. 123-128,

2017.

[14] S. Bathallath, Å. Smedberg, and H. Kjellin, "Managing project interdependencies in IT/IS project portfolios: a

review of managerial issues," International journal of information systems and project management, vol. 4, no.1, pp.

67-82, 2016.

[15] A. Elbanna, "Rethinking IS project boundaries in practice: A multiple-projects perspective," The Journal of

Strategic Information Systems, vol. 19, no.1, pp. 39-51, 2010.

[16] S. Nerur, R. Mahapatra, and G. Mangalaraj, "Challenges of migrating to agile methodologies," Communications of

the ACM, vol. 48, no.5, pp. 72-78, 2005.

[17] K. H. Rolland, B. Fitzgerald, T. Dingsøyr, and K.-J. Stol, "Problematizing Agile in the Large: Alternative

Assumptions for Large-Scale Agile Development," International Conference on Information Systems, Dublin, Ireland,

2016.

[18] J. Nuottila, K. Aaltonen, and J. Kujala, "Challenges of adopting agile methods in a public organization,"

International Journal of Information Systems and Project Management, vol. 4, no.3, pp. 65-85, 2016.

[19] T. W. Malone and K. Crowston, "The interdisciplinary study of coordination," ACM Computing Surveys, vol. 26,

no.1, pp. 87-119, 1994.

[20] M. Hoegl, K. Weinkauf, and H. G. Gemuenden, "Interteam coordination, project commitment, and teamwork in

multiteam R&D projects: A longitudinal study," Organization science, vol. 15, no.1, pp. 38-55, 2004.

[21] L. Groth, Future organizational design: the scope for the IT-based enterprise, New York: John Wiley & Sons,

1999.

[22] D. E. Strode, S. L. Huff, B. G. Hope, and S. Link, "Coordination in co-located agile software development

projects," Journal of Systems and Software, vol. 85, no.6, pp. 1222-1238, 2012.

[23] P. Xu, "Coordination in large agile projects," The Review of Business Information Systems, vol. 13, no.4, pp. 29,

2009.

[24] N. B. Moe, T. Dingsøyr, and T. Dybå, "A teamwork model for understanding an agile team: A case study of a

Scrum project," Information and Software Technology, vol. 52, no.5, pp. 480-491, 2010.

[25] I. Nonaka and H. Takeuchi, The knowledge-creating company: how Japanese companies create the dynamics of

innovation. New York: Oxford University Press, 1995.

[26] V. Stray, D. I. Sjøberg, and T. Dybå, "The daily stand-up meeting: A grounded theory study," Journal of Systems

and Software, vol. 114101-124, 2016.

[27] V. Stray, N. B. Moe, and G. R. Bergersen, "Are Daily Stand-up Meetings Valuable? A Survey of Developers in

Software Teams," International Conference on Agile Software Development, 2017, pp. 274-281.

[28] H. Nyrud and V. Stray, "Inter-Team Coordination Mechanisms in Large-Scale Agile," Proceedings of the Scientific

Workshop Proceedings of XP2017, 2017, pp 1-6.

To schedule or not to schedule? An investigation of meetings as an inter -team coordination mechanism in large-scale agile

software development

International Journal of Information Systems and Project Management, Vol. 6, No. 3, 2018, 45-59

◄ 58 ►

[29] D. Šmite, N. B. Moe, A. Šāblis, and C. Wohlin, "Software teams and their knowledge networks in large-scale

software development," Information and Software Technology, vol. 8671-86, 2017.

[30] M. Paasivaara, C. Lassenius, and V. T. Heikkila, "Inter-team coordination in large-scale globally distributed scrum:

Do Scrum-of-Scrums really work?," Empirical Software Engineering and Measurement (ESEM), 2012 ACM-IEEE

International Symposium on, 2012, pp. 235-238.

[31] K. H. Rolland, V. Mikkelsen, and A. Næss, "Tailoring Agile in the Large: Experience and Reflections from a

Large-Scale Agile Software Development Project," International Conference on Agile Software Development, 2016, pp.

244-251.

[32] C. Larman and B. Vodde, Large-scale scrum: More with LeSS: Addison-Wesley Professional, 2016.

[33] D. Leffingwell, SAFe® 4.0 Reference Guide: Scaled Agile Framework® for Lean Software and Systems

Engineering: Addison-Wesley Professional, 2016.

[34] P. A. Jarzabkowski, J. K. Lê, and M. S. Feldman, "Toward a theory of coordinating: Creating coordinating

mechanisms in practice," Organization Science, vol. 23, no.4, pp. 907-927, 2012.

[35] P. S. Adler and A. Shenhar, "Adapting your technological base:The organizational challenge," Sloan Management

Review, vol. 32, no.1, pp. 25–37, 1990.

[36] T. Dingsøyr, N. B. Moe, and E. A. Seim, "Coordinating Knowledge Work in Multi-Team Programs: Findings from

a Large-Scale Agile Development Program," Project Management Journal, 2018.

[37] G. Walsham, "Interpretive case studies in IS research: nature and method," European Journal of Information

Systems, vol. 4, no.2, pp. 74-81, 1995.

[38] G. Walsham, "Doing interpretive research.," European journal of Information Systems, vol. 15, no.3, pp. 320-330,

2006.

[39] H. K. Klein and M. D. Myers, "A set of principles for conducting and evaluating interpretive field studies in

information systems," MIS Quarterly, vol. 23, no.1, pp. 67-93, 1999.

[40] S. Sarker, X. Xiao, and T. Beaulieu, "Guest editorial: qualitative studies in information systems: a critical review

and some guiding principles," MIS Quarterly, vol. 37, no.4, pp. iii-xviii, 2013.

[41] C. Bentley, Prince2: a practical handbook: Routledge, 2010.

[42] J. Saldaña, The coding manual for qualitative researchers: Sage, 2015.

[43] D. E. Strode, B. G. Hope, S. L. Huff, and S. Link, "Coordination Effectiveness In An Agile Software Development

Context," PACIS, 2011, pp. 183.

[44] S. Pemsel and R. Müller, "The governance of knowledge in project-based organizations," International Journal of

Project Management, vol. 30, no.8, pp. 865-876, 2012.

[45] O. J. Klakegg, T. Williams, O. M. Magnussen, and H. Glasspool, "Governance frameworks for public project

development and estimation," Project Management Journal, vol. 39, no.1, pp. 27-42, 2008.

[46] B. Bygstad and G. Lanestedt, "ICT based service innovation–A challenge for project management," International

Journal of Project Management, vol. 27, no.3, pp. 234-242, 2009.

To schedule or not to schedule? An investigation of meetings as an inter -team coordination mechanism in large-scale agile

software development

International Journal of Information Systems and Project Management, Vol. 6, No. 3, 2018, 45-59

◄ 59 ►

Biographical notes

Nils Brede Moe

Nils Brede Moe works with software process improvement, intellectual capital, and agile and global

software development as a senior scientist at SINTEF. His research interests are related to

organizational, socio-technical, and global/distributed aspects. His publications include several

longitudinal studies on self-management, decision making, innovation, and teamwork. He has co-

edited the books Agile Software Development: Current Research and Future Directions and Agility

Across Time and Space: Implementing Agile Methods in Global Software Projects. His thesis was,

“From Improving Processes to Improving Practice - Software Process Improvement in Transition

from Plan-driven to Change-driven Development”. He holds an adjunct position at the Blekinge

Institute of Technology in Sweden.

www.shortbio.org/nils.b.moe@sintef.no

Torgeir Dingsøyr

Torgeir Dingsøyr focuses on software process improvement and knowledge management as chief

scientist at the SINTEF research foundation. In particular, he has studied agile software development

through a number of case studies, co-authored the systematic review of empirical studies, co-edited

the book Agile Software Development: Current Research and Future Directions, and co-edited the

special issue on Agile Methods in the Journal of Systems and Software. He wrote his doctoral thesis

on Knowledge Management in Medium-Sized Software Consulting Companies at the Department of

Computer and Information Science, Norwegian University of Science and Technology, where he is

adjunct professor.

www.shortbio.org/torgeird@sintef.no

Knut Rolland

Knut Rolland focuses on conducting qualitative research in the field of information systems (IS) on

various topics and in various organizational settings, as associate professor at the University of Oslo.

In particular, he has interest in studying implementation and organizational consequences of

corporate-wide digital infrastructures. He got 8 years of experience as a practitioner participating on

some of the largest software development projects in Norway. His main research interests are:

Digital infrastructures and software platforms, Large-scale IS projects and complexity, IT innovation

in organizations and Qualitative research methods.

www.shortbio.org/knut.rolland@sitnef.no

http://www.shortbio.org/nils.b.moe@sintef.no
http://www.shortbio.org/torgeird@sintef.no
mailto:knut.rolland@sitnef.no

